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Analysis of cracked cruciform specimens under biaxial loading conditions is very important
and closer to reality in the study of behavior of marine, naval, aeronautical and railway
structures. The aim of this work is to examine the evolution of fracture parameters in a
combined mixed mode of an aluminum alloy A6082-T6 cruciform specimen as a function
of the biaxial loading with different ratios. To this end, the effects of main parameters,
such as load ratio, crack length, crack orientation and non-proportional loading coefficient
have been analyzed and discussed in order to highlight fracture toughness of the studied
material. The results show that the finite element method is a useful tool for calculation of
crack characteristics in the mechanics of biaxial fracture. According to the obtained results,
a non-proportional evolution of the fracture parameters, namely, the SIFs KI and KII ,
T-stress, and the biaxiality parameter was observed. Indeed, the latter depends considerably
on the crack length, the angle of crack orientation and the applied biaxial loading. Detailed
concluding remarks are presented at the end of this work.
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1. Introduction

Fracture is the primary threat to the integrity, safety and performance of nearly all highly
stressed mechanical structures in engineering. Failures due to fracture can have major nega-
tive consequences. Furthermore, fatigue failure of structural elements subjected to biaxial stress
system may develop from surface flaws, and relatively few analyses have been carried out to
determine the stress intensity factors along the defects and crack growth rates (Freitas et al.,
2014; Hatanaka et al., 1997; Truchon et al., 1981). The effect of notch radius and thickness on
the stress concentration and deformation factors in plates with central notch defects subjected
to uniaxial and biaxial loading were analyzed using three dimensional finite elements by Abd-
-Elhady (2014). It was found that the maximum stress and strain concentration factors occurred
on the midplane of the plate only in the case of a thin plate. However, the stress and strain con-
centration factors increased with the decreasing biaxial ratio inside the plate while the opposite
trend was found at the plate surface (Pickard, 2015).



1022 F. Khelil et al.

A cruciform biaxial test specimens with seven biaxial tensile tests were conducted on 2219-
-T87 aluminum alloy by Dawicke and Pollock (1997). In that study an elastic-plastic finite ele-
ment analysis was used to simulate each test and predict the yield stresses. Other considerations
by Shlyannikov et al. (2014), Muhsin et al. (2013) in using the cruciform specimens (CS) inc-
luded specimen alignment, size and uniformity of the biaxial stress. Tensile tests, both biaxial
and uniaxial, require a definition of the yielding. On this basis, crack growth interpretation is
performed using the traditional elastic stress intensity factors.
Nevalainen (1997) and Xiao et al. (2015) focused on the relations between crack size on the

free surface of a specimen, CTOD and aspect ratio under different fatigue loading conditions.
They proved that small-scale yielding correction (SSYC) and statistical treatment for specimen
thickness effect are applicable for specimen size correction for actual specimens, while T-stress
and SIF seemed to serve better as qualitative indexing parameters.
Many structural applications are subjected to multi-axial states of stress. The estimation of

the effect of the first non-singular stress term and the stress intensity factor (SIF) on the fracture
behavior of the cruciform specimen under biaxial loading conditions was made by Ayatollahi et
al. (2011), Banerjee et al. (2015) and Upadhyay et al. (2017). The results demonstrated that
neglecting the first non-singular stress term could lead to significant errors in predicting the
apparent fracture toughness of notched components.
The T-stress originally proposed to two-parameter fracture toughness for pure mode I under

monotonic/static loading was employed by Shlyannikov et Zakharov (2014) to study the crack
growth rate under the cyclic mixed mode fracture. They found that there was a greater variation
of the mixed mode crack growth rate depending on the current value of the T-stress along the
curvilinear crack trajectories.
Computation of crack characteristics (SIF and T-stress) in three dimensional specimens

was presented by Novotný (2012) and Navarro-Zafra et al. (2016). The SIF was determined by
processing displacements around the crack tip. Different methods have been used for calculating
the T-stress. Cruciform specimens with an inclined crack subject to biaxial loads to study the
fatigue crack growth rate under the mixed mode were reported by many authors (Eftis and
Subramonian, 1978; Lamkanfi et al., 2010). They suggested a method for infiltrating the mixed
mode displacement of cracks in the deformed state.
In this paper, numerical results for different crack lengths and different angles of the crack

orientation in cruciform specimens under different biaxial loading conditions are presented. In-
deed, the evolution of the fracture parameters such as, KI , KII , T-stress and the biaxiality
parameter as a function of crack length, loading conditions and the crack orientation angle has
been highlighted and discussed.

2. Background formulation

The Williams approach proposes a general alternative resolution of equation (2.1) without using
complex functions. We assume for this that the Airy function A is written in the form

A(r, α) = rγ+1F (α) (2.1)

where γ is a scalar, r is the radial distance from the crack tip, α is an angular coordinate and
F (α) a continuous and differentiable function of α to be determined.
As shown by Pickard (1986), the governing equation of linear elasticity problems is a two-

-dimensional bi-harmonic equation in terms of function A(r, α). Accordingly, the differential
equation is expressed in cylindrical coordinates as
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By substituting the previous expression of A(r, α) into equation (2.2), we obtain the following
4-th order differential equation for F (α)

d4F (α)

dα4
+ [(γ − 1)2 + (γ + 1)2]

d2F (α)

dα2
+ (γ − 1)2(γ + 1)2F (α) = 0 (2.3)

The general solution for F (α) which satisfies Eq. (2.3) is

F (α) = A cos(γ + 1)α +B cos(γ + 1)α+ C sin(γ − 1)α +D sin(γ − 1)α (2.4)

where A, B, C and D are constants which will be set by boundary conditions.
The stresses are related to the Airy stress function by the following expressions (Pickard,

1986)
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Substitution of equation (2.1) into (2.5) yields
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(2.6)

where σrr, σαα and σrα are the stresses components in cylindrical coordinates.
Finding a solution for F (α) requires that

F (0) = F (2π) = 0
dF (0)

dα
=
dF (2π)

dα
= 0 (2.7)

These boundary conditions are satisfied if

A = −C B = −
γ − 1
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n

2
n = 1, 2, 3, . . .

(2.8)

There is a corresponding function An(r, α) for each value of γ, γn, which satisfies the bihar-
monic equation and the applied boundary conditions. The most general solution is obtained by
taking a linear combination of these solutions
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From equation (2.6), and by considering only the crack tip region (0 < r ≪ 1), the term in
√
r

above becomes relatively insignificant. Thus the crack tip stress field, up to the first three terms,
expressed in Cartesian coordinates is of the form
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Now, by considering the Westergaard method, the stress field can be expressed in complex
space as

σ11 = Re[2ξ
′(z)]− x2Im[2ξ′′(z)] + β

σ22 = Re[2ξ
′(z)] + x2Im[2ξ

′′(z)] − β
σ12 = −x2Im[2ξ′′(z)] + β

(2.12)

where z = x1 + ix2 = re
iα is a complex number, ξ(z) is an analytical function termed “complex

potential” and β is a real function of x1 and x2.
For the crack tip region, it can be demonstrated that (Pickard, 1986)

2ξ′(z) ≈
√
aσ

√

2(z − a)
−
(1− k)σ
2

=

√
aσ
√
2r

(

cos
α

2
− i sin

α

2

)

−
(1− k)σ
2

(2.13)

and

2ξ′′(z) ≈
√
aσ

2
√

[2(z − a)]3
=

√
aσ

√

(2r)3

(

cos
3α

2
− i sin

3α

2

)

(2.14)

Substituting into equations (2.12), with the value of β = −(1− k)σ/2, gives
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whereKI = σ
√
πa is defined as the mode I stress intensity factor and k = σxx/σyy is the nominal

stress ratio.
It should be noted that this analysis was first performed by Westergaard for equibiaxial

loading, and was subsequently expanded to cover the general biaxial loading by Sih (1966).
By making comparison with Eq. (2.11), we get
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A similar analysis, for shear loading of the remote boundaries, leads to
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where KII = τ
√
πa is defined as the mode II stress intensity factor, for remote shear stress τ .

Consequently, the general expressions for the stresses in the vicinity of the crack tip (2.11)
can be now written as
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where C2 = −(1− k)σ, KI = σ
√
πa and KII = τ

√
πa for the general remote loading of a crack

length 2a in an infinite sheet.
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Now, consider that the crack makes an angle θ with the y direction in an infinite plate
subjected to stresses σ and kσ along the y and x direction, respectively, at infinity (Fig. 1a). By
stress transformation, we obtain the following stresses σ′x, σ

′

y, τ
′

xy in the system x
′y′ (Fig. 1b)
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k + 1

2
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k − 1
2
σ cos 2θ σ′y =

k + 1

2
σ +
k − 1
2
σ cos 2θ

τ ′xy = −
k − 1
2
σ sin 2θ

(2.19)

Thus, the stress field at the crack tip is obtained by superposing an opening-mode loading caused
by the stress σ′y and a sliding-mode loading caused by the stress τ

′

xy.

Fig. 1. An inclined crack (a) in a biaxial stress field and (b) stress transformation along and
perpendicular to the crack plane

The stress (σ′y − σ′x) does not create singular stresses but should be subtracted from the σ′x
stress along the x′-axis (Gdoutos, 2005). From Eqs. (2.18) and (2.19), we obtain the stresses
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where KI and KII take the following form

KI =
σ
√
πa

2
[(1 + k)− (1− k) cos 2θ] KII =

σ
√
πa

2
[(1− k) sin 2θ] (2.21)

and T is the T-stress which is given by

T = σ(1 − k) cos 2θ (2.22)

In the case of a specimen with finite dimensions, expression (2.21) becomes
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σ
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2
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σ
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2
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where YI and YII are functions which take into account the influence of specimen geometry, the
load biaxiality ratio and the crack angle.



1026 F. Khelil et al.

The J-integral for the mixed mode loading can be expressed as a function of the elastic stress
intensity factors KI and KII as follows (Shlyannikov, 2013)

Jx =
(1 + ν)(1 + κ)

4E
(K2I +K

2
II) Jy =

(1 + ν)(1 + κ)

2E
KIKII

J =
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J2x + J
2
y

(2.24)

where κ = 3 − 4ν for plane strain, κ = (3 − ν)/(1 + ν) for plane stress, ν and E are Poisson’s
coefficient and Young’s modulus, respectively.

3. Geometrical model and material properties

The cruciform specimen made of 6082-T6 aluminum alloy (Fig. 2) was designed according to
criteria announced by Dawicke and Pollock (1997). Symmetrical boundary conditions were con-
sidered. The plate was loaded by a load σ in the y-direction, and loaded in the x-direction by
σxx = kσyy at plate edges as shown in Fig. 2. σ varied from 100 to 900MPa, and k is the nominal
stress ratio.

Fig. 2. Illustration of the specimen geometry with the boundary conditions and loading

The mechanical properties of the plate were as follows: modulus of elasticity E = 77000MPa,
Poisson’s ratio ν = 0.3. As illustrated in Fig. 2, the plate was 240mm in height, 240mm in width,
and had thickness of 8mm.

In the first part, the crack length ranged from 5mm to 25mm with a step of 5mm, and a
horizontal crack (θ = 0) was chosen.

In the second phase, the crack length was 10mm and the angle of crack orientation θ varied
from 0◦ to 90◦ with a step of 15◦. The plate was analyzed for the bi-equiaxial loading by applying
stress in the x- and y-axis directions with σxx = kσyy uniformly applied to its ends as shown
in Fig. 2. In order to highlight the effect of loading conditions on the evolution of the fracture
parameters, different values of k were tested.
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4. Finite element modeling

Three dimensional finite element models of cruciform specimens were developed using ABAQUS
software (2013). It is difficult to obtain an acceptable mesh using global seeding. Then, the
specimen was discretized in several subdomains according to the angular direction of the crack.
Each subdomain was meshed individually using a refined mesh with 3D linear hexadecimal
elements (C3D8). The results obtained with the elements C3D8 were more numerically accurate
than those obtained with C3D8R (reduced integration elements).

Figure 3 shows a typical FE mesh modeling of the cruciform specimen under consideration.
A highly refined mesh in the crack-tip region as shown in Figs. 3b and 3c was used to provide a
good resolution of stress fields over the normalized distance at the crack tip. Regular integration
and a collapsed element side with the duplicate node technique were employed to eliminate shear
locking in the elements. We note that this method is coherent and cost-effective for very specific
calculation of the fracture parameters (SIF, T-stress and the biaxiality parameter).

Fig. 3. Illustration of: (a) finite element model employed, (b) typical mesh used for a quarter of the
cruciform specimen, (c) detail of the refined mesh near the crack tip

The model consists of 25690 linear hexahedral elements and 29513 nodes arranged in a focu-
sed or centered fan configuration at the crack tip. It should be noted that for crack orientation
analysis, in the second part of this study, the mesh was refined and oriented according to the
crack angle.

5. Results and discussion

The aim of this work is to study the evolution of different fracture parameters in three-
-dimensional finite elements in the case of a cracked cruciform specimen made of 6082-T6 alumi-
num alloy. Consequently, details of the models for evaluation of the fracture parameters under
the biaxial loading and various cracks orientations in the mixed mode will be discussed in this
work.

5.1. Evolution of SIF

Using a simple definition which requires no additional assumptions, the elastic stress intensity
factors can also characterize stress fields at the crack tip and control of 3D fracture. Figures 4
and 5 show respectively the evolution of KI and KII factors as a function of the applied load for
different crack lengths at the center of the cruciform specimen. The decisive argument for the
choice of the fracture parameters is the sensitivity of KI and KII through the stresses effects.
Plane strain conditions have been assumed in the numerical simulations.



1028 F. Khelil et al.

In the case of σyy = 100MPa and varied σxx (Fig. 4a), it can be seen that the SIF decreases
linearly with the increase of the horizontal applied load σxx. This can be attributed to the crack
lips closing due to the loading parallel to them.

Fig. 4. Evolution of KI versus the applied loading for different crack lengths in the mixed mode in the
case of: (a) σyy = 100MPa and varied σxx, (b) σxx = 100MPa and varied σyy and (c) with varied

bi-equiaxial tensile load

In the case of σxx = 100MPa and varied σyy (Fig. 4b), it can be seen that the SIF increases
linearly with the increase of the vertical applied load σyy. This seems to be in good agreement
with the literature since this type of loading contributes to the opening of the crack.

In the case of a varied bi-equiaxial tensile load (Fig. 4c), it can be noted that the SIF
increases linearly with the increase of the applied load in a somewhat weak way compared with
the previous case. This explains the theoretical relationship between KI and the load biaxiality
ratio k (which is given by the ratio: σyy/σxx) (Ayatollahi et al., 1998; Papadopoulos 1988).
Furthermore, it should be noted generally that the SIF increases with the increase of the crack
length for the three cases.

Fig. 5. Evolution of KII versus the applied loading for different crack lengths in the mixed mode in the
case of: (a) σyy = 100MPa and varied σxx, (b) σxx = 100MPa and varied σyy and (c) with varied

bi-equiaxial tensile load
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The same trends of variation have been found in the case of KII as shown in Fig. 5. The
only difference lies in the magnitude of the values obtained which are lower compared to those
of KI . It should also be noted that KII is not zero even though the crack is horizontal. This
means that the crack failure mode under consideration is not a pure mode I.

5.2. Evolution of T-stress

The T-stress has been recognized to be a measure of constraint for small-scale yielding
conditions. It is further assumed that for moderate small-scale yielding conditions or plastic
deformations, the biaxial fracture process can be controlled by the single parameter T-stress
based on the elastic numerical solutions and, therefore, is reflected in the influence of cracked
body geometry and loading conditions. In the present study, the T-stress is employed to analyze
the mechanical behavior of the CS under the mixed mode of fracture.

Few methods have been proposed for calculating T , among which, we can quote the stress
method by Rice (1974), the interaction integral method by Nakamura and Parks (1992), the
displacement method by Ayatollahi et al. (1998), the strain gage method Khelil et al. (2017),
and others (Shlyannikov et al., 2014). In this study, we explore the direct use of FEM analysis
for calculating the T-stress on the basis of crack flank nodal displacements (Ayatollahi et al.,
1998).

Fig. 6. Evolution of T-stress versus the applied loading for different crack lengths in the mixed mode in
the case of: (a) σyy = 100MPa and varied σxx, (b) σxx = 100MPa and varied σyy and (c) with varied

bi-equiaxial tensile load

To this end, the commercial finite element ABAQUS software (2013), has been used to
calculate the stress distributions ahead of the crack tip. It should be noted that the calculation
of the T-stress was carried out from the values of the same interval as in the calculation of the
stress intensity factors. In Fig. 6, the evolution history of the T-stress parameter with the loading
is displayed for the horizontal cracked cruciform specimen when the crack length is ranging from
5 mm to 25mm. It can be seen that:

• In the case of σyy = 100MPa and varied σxx (Fig. 6a), the T-stress increases linearly with
the increase of the horizontal applied load σxx (with positive values). Indeed, in this case,
the non-singular term of the Williams stresses field is a tensile stress and causes closing of
the crack lips, which justifies the positive values.

• In the case of σxx = 100MPa and varied σyy (Fig. 6b), the absolute value of T-stress
increases linearly with the increase of the vertical applied load σyy. The negative values of
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the latter can be justified by the way that the non-singular term of the Williams stresses
field is a compressive stress which can cause the opening of the crack lips.

• In the case of varied bi-equiaxial tensile load (Fig. 6c), the T-stress increases linearly with
the increase of the applied load as in the first case, the only difference is the magnitude
which is relatively low.

Furthermore, it should be generally noted that the effect of crack length is more pronounced
in the third case compared to the first two cases. Based on the results of static biaxial loading
fracture, the T-stress is a linear-elastic parameter best suited for constraint indexing.

5.3. Evolution of the biaxiality parameter

To characterize the stress effect described by the T-stress with respect to the stress intensity
factors, Leevers and Radon (1982) introduced an additional fracture parameter called the local
biaxiality ratio β. In the case of mode I, this parameter is given by the following expression

β =
T
√
πa

KI
(5.1)

where KI is the stress intensity factor and a is the crack length. Equation (5.1) can be extended
to the mixed mode if KI is replaced by an equivalent stress intensity factor Keff (Leevers and
Radon, 1982). Then, the local biaxiality ratio β for general mixed mode conditions is

β =
T
√
πa

Keff
(5.2)

with

Keff =
√

K2I +K
2
II (5.3)

For the same specimen configuration and different crack lengths, the biaxiality parameter β
has been analyzed as a function of the applied biaxial loading using 3D elastic finite element
computations. The obtained results are shown in Fig. 7. It was found that in the first case
where σyy = 100MPa and varied σxx (Fig. 7a), a parabolic variation was observed. The more

Fig. 7. Evolution of the biaxiality paramters β versus the applied loading for different crack lengths in
the mixed mode in the case of: (a) σyy = 100MPa and varied σxx, (b) σxx = 100MPa and varied σyy

and (c) with varied bi-equiaxial tensile load
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the applied load increases, the more the parameter β increases. In contrast, for the effect of
crack length, when a is ranging from 5mm to 15mm, the biaxiality parameter increases with
the increase of the latter, exceeding a = 15mm, β decreases again.

This can be attributed to triple effects of the applied load and crack lenght with the tria-
xiality of the stresses at the crack tip. In the second case where σxx = 100MPa and varied σyy
(Fig. 7b), a hyperbolic variation has been noticed. The absolute value of the biaxiality parame-
ter β decreases with the increase of the applied load and crack length.

In the case of varied bi-equiaxial tensile load (Fig. 7c), it can be seen that the biaxiality
parameter increases with the increase of the crack length, and almost constant evolution as a
function of the applied load has been observed. In general, the maximum value of the biaxiality
parameter β does not exceed 0.4 for a = 25mm. This can be attributed to the neglected effect
of the biaxility in the case of a bi-equiaxial loading of the cracked CS.

6. Influence of crack orientation in the mixed mode

To investigate the effect of crack orientation on fracture parameters (KI , KII , T-stress and
biaxiality β) in the mixed mode loading, similar analyses as in the previous Section were carried
out for different crack orientations (Fig. 8). All the configurations studied contained an internal
central crack of length 2a inclined with respect to the central and horizontal planes of the CS.

Fig. 8. Illustration of finite element models and details of the refined meshes near the crack tip
employed for different crack orientations: (a) θ = 15◦, (b) θ = 30◦, (c) θ = 45◦ and (d) θ = 60◦

In the present investigation, the magnitude of the applied load biaxiality is described by the
remote nominal stress ratio k. By changing the angle of crack orientation, different combinations
of modes I and II can be achieved. The obtained results for each parameter are discussed below.

6.1. Evolution of SIFs

In order to make comparison between the obtained results, evolutions of the normalized
values of SIF as a function of the applied load in the case of a = 10mm with different angles
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of crack orientation ranging from 0◦ to 60◦ by a step ∆θ = 15◦ have been plotted in Fig. 9 for
different cases of loading.

Fig. 9. Evolution of KI as a function of the applied load for different crack angles in the case of:
(a) σyy = 100MPa and varied σxx, (b) σxx = 100MPa and varied σyy, (c) with varied bi-equiaxial

tensile load

In the case of σyy = 100MPa and varied σxx (Fig. 9a), three different types of behavior have
been highlighted. When θ = 0◦, the SIF decreases linearly with the increase of the horizontal
applied load σxx. When θ = 15

◦, almost constant evolution has been displayed. However, when
θ is greater or equal to 30◦, the latter increases with the increase of σxx. In the first behavior, the
decrease of KI can be justified by the fact that the displacements of the crack lips are parallel
to the applied load σxx (the closure mode is favored). The increase of this parameter in the
third behavior is attributed to the opening mode of the crack due to orientation of the applied
load σxx with respect to the crack plane which tends towards perpendicularity.

In the case of σxx = 100MPa and varied σyy (Fig. 9b), it can be seen that the SIF increases
linearly with the increase of the vertical applied load σyy. This can be attributed to the applied
load which is always perpendicular to the crack lips. Indeed, the inclination slope of the variation
of KI is much more pronounced for θ less or equal to 15

◦ compared to that of θ  30◦.
In the case of varied bi-equiaxial tensile load (Fig. 9c), it can be noted that the SIF increases

linearly with the increase of the applied load. In addition, when θ increases, KI decreases.

Figure 10 shows the evolution of the SIF KII as a function of the applied load for three
different loading conditions and different angles of crack orientation. A crack length of 20mm
has been set for all the simulation tests.

In the first case (Fig. 10a), it can be observed that the SIF KII remains constant and equals
zero with the increase of the vertical applied load when θ = 0◦. However, when θ is greater or
equal to 15◦, the SIF KII increases linearly with the increase of the vertical applied load. In
addition, it can be seen that when θ = 60◦, the obtained values of KII are lower than those
obtained for θ = 45◦. This is due to the fact that in this position (θ > 45◦), the crack is solicited
to the opening rather than the sliding mode.

In the second case (Fig. 10b), KII increases with the increase of the applied load. Indeed,
when θ = 0◦, an almost constant evolution was noted (KII close to 0), however, for other values
of θ, KII varies linearly with the increase of the load except for θ = 60

◦, where the slope of KII
variation is lower than that for of 30◦ and 45◦. This may be justified also by the fact that the
shear movement of the crack lips decreases when the orientation angle of the crack exceeds 45◦.
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In the third case of the varied bi-equiaxial tensile load (Fig. 10c), three cases were found:
(i) when 0◦ ¬ θ ¬ 30◦, KII increases with the increase of the applied load and decreases with
the increase of the crack orientation angle; (ii) when θ = 45◦, KII remains equal to 0 with the
increase of the applied load; (iii) when θ = 60◦, a slight increase of KII has been noted but with
values lower than those obtained for 0◦ ¬ θ ¬ 30◦.

Fig. 10. Evolution of KII versus the applied load for different crack angles in the case of:
(a) σyy = 100MPa and varied σxx, (b) σxx = 100MPa and varied σyy, (c) with varied bi-equiaxial

tensile load

6.2. Evolution of T-stress

Figure 11 shows the evolution of the T-stress as a function of the applied loads for different
angles of crack orientation (θ = 0◦, 15◦, 30◦, 45◦ and 60◦) when the crack length is a = 10mm.
For each case, we can draw the following conclusions.

In the case of σyy = 100MPa and varied σxx (Fig. 11a), we can distinguish three types
of variations as a function of θ. When 0◦ ¬ θ ¬ 30◦, the T-stress increases linearly with the
increase of the horizontal applied load σxx and decreases with the increase of θ. When θ = 45

◦,
the T-stress remains constant and equal to zero with the increase of the applied load. When
θ = 60◦, the T-stress increases linearly in absolute values with the increase of the horizontal
applied load.
In the case of σxx = 100MPa and varied σyy (Fig. 11b), the absolute values of the

T-stress increases linearly with the increase of the vertical applied load σyy and decreases with
the increase of θ. This can be attributed to the combination effects of the applied load and the
crack orientation angle.

In the case of the varied bi-equiaxial tensile load (Fig. 11c), two different types of behavior
have been observed: for θ = 0◦ and 15◦, the T-stress is positive and increases with the increase
of the applied load and the angle θ. On the other hand, for θ = 30◦, 45◦ and 60◦, the T-stress
is negative and increases in the absolute value with the increase of the applied load and the
angle θ. This change in direction may also be due to the combined effects of the evolution of the
applied load with the orientation of the crack.

6.3. Evolution of the biaxiality parameter

The biaxiality parameter β can provide a good base for estimating the level of scatter in
apparent toughness values as a function of the biaxial load ratio k and crack orientation angle θ.
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Fig. 11. Evolution of the T-stress versus the applied load for different crack angles in the case of:
(a) σyy = 100MPa and varied σxx, (b) σxx = 100MPa and varied σyy and (c) with varied bi-equiaxial

tensile load

In this context, this part of the present work is devoted to study the evolution of the biaxiality
parameter β under the same tensile loading conditions as previously, and with the same crack
length (a = 10mm). The obtained results are depicted quantitatively in Fig. 12.

Fig. 12. Evolution of the biaxiality paramter β versus loading for different crack orientation angles in
the mixed mode in the case of: (a) σyy = 100MPa and varied σxx, (b) σxx = 100MPa and varied σyy,

(c) with varied bi-equiaxial tensile load

In the first case of the load ratio k > 1 with σyy = 100MPa and σxx varied (Fig. 12a). Two
behavior types were observed. The first was noticed for θ = 0◦ where the biaxiality parameter
increases with the increase of the load in a parabolic manner. The second is remarked for other
values of θ, where β increases with the increase of the load up to 300MPa, then it remains
constant until the end of loading. In the case of the load ratio k < 1 with σxx = 100MPa and
σyy varied (Fig. 12b), different behavior has been found.

For θ between 0◦ and 30◦, a small increase in the absolute value was observed for a load
less than or equal to 300MPa, then quasi-constant behavior was noted when the applied load
exceeded 300MPa. For θ = 45◦, the biaxiality parameter was found constant and equal to
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zero. For θ = 60◦, β increased in the absolute value with the increase of the applied load in a
hyperbolic way.

In the case of the load ratio k = 1 with a varied bi-equiaxial tensile load (Fig. 12c), a mostly
constant evolution was noticed. In general, values of the biaxiality parameter β are between −0.1
(for θ = 30◦) and 0.65 (for θ = 60◦). This implies the neglected effect of the load ratio (k = 1)
on the evolution of β parameter in the case of cracked CS.

7. Conclusion

In this paper, a numerical evaluation of the fracture parameters such as KI and KII , the T-stress
and the biaxiality parameter β using the finite element method was developed for cruciform spe-
cimens under different loading conditions. Based on the obtained numerical results, the following
conclusions can be drawn.

— In the case of different horizontal crack lengths:

• The SIFs KI and KII decrease linearly with the increase of the horizontal applied load σxx
and increase linearly with the increase of the vertical applied load σyy or the load ratio k.

• The absolute values of the T-stress increase linearly with the increase of the applied load
σxx or σyy. However, a low increase has been noticed with the increase of the load ratio.

• When σyy is fixed at 100MPa and σxx is varied from 100 to 900MPa, the biaxiality
parameter β increases in a parabolic way, however, when σxx is fixed at 100MPa and
σyy is varied, this parameter decreases in a hyperbolic manner. On the other hand, almost
a constant evolution has been observed in the case of the varied bi-equiaxial tensile load.

— In the case of different crack angles:

• The SIFs KI and KII increase linearly with the increase of the biaxial applied load except
when θ is equal to 0◦ and 45◦. When θ = 0◦, for the first case of loading, KI decreases
linearly with the increase of the horizontal applied load σxx. When θ = 45

◦, for the third
case of loading,KII remains constant and equal to zero with the increase of the bi-equiaxial
tensile load.

• When σyy is fixed at 100MPa and σxx is varied from 100 to 900MPa, three types of
behavior have been distinguished for the T-stress as a function of θ: (i) an increase with
positive values for 0◦ ¬ θ ¬ 30◦, (ii) the T-stress equal to zero for θ = 45◦ and (iii) a
decrease with negative values for θ = 60◦. When σxx is fixed at 100MPa and σyy is varied,
the absolute values of this parameter increases linearly with the increase of the vertical
applied load σyy. On the other hand, in the case of the varied equi-biaxial tensile load, two
different types of behavior have been observed: for θ = 0◦ and 15◦, the T-stress is positive
and increases with the increase of the applied load, and for 30◦ ¬ θ ¬ 60◦, the T-stress is
negative and decreases with the increase of the applied load.

• In overall, the biaxiality parameter β remains almost constant with the increase of the
biaxial applied load except when θ = 0◦. Indeed, β increases in a parabolic manner with
the increase of the horizontal applied load σxx, and when θ = 60

◦, β decreases in a
hyperbolic way with the increase of the vertical applied load σyy.
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